Background: Network Analysis (NA) is a method that has been used in various disciplines such as Social sciences and Ecology for decades. So far, NA has not been used extensively in studies of medication use. Only a handful of papers have used NA in Drug Prescription Networks (DPN). We provide an introduction to NA terminology alongside a guide to creating and extracting results from the medication networks. Objective: To introduce the readers to NA as a tool to study medication use by demonstrating how to apply different NA measures on 3 generated medication networks. Methods: We used the Norwegian Prescription Database (NorPD) to create a network that describes the co-medication in elderly persons in Norway on January 1, 2013. We used the Norwegian Electronic Prescription Support System (FEST) to create another network of severe drug-drug interactions (DDIs). Lastly, we created a network combining the two networks to show the actual use of drugs with severe DDIs. We used these networks to elucidate how to apply and interpret different network measures in medication networks. Results: Interactive network graphs are made available online, Stata and R syntaxes are provided. Various useful network measures for medication networks were applied such as network topological features, modularity analysis and centrality measures. Edge lists data used to generate the networks are openly available for readers in an open data repository to explore and use. Conclusion: We believe that NA can be a useful tool in medication use studies. We have provided information and hopefully inspiration for other researchers to use NA in their own projects. While network analyses are useful for exploring and discovering structures in medication use studies, it also has limitations. It can be challenging to interpret and it is not suitable for hypothesis testing.


翻译:网络背景:网络分析(NA)是几十年来在社会科学和生态学等不同学科中使用的一种方法。到目前为止,NA尚未广泛用于药物使用研究。只有少数论文在药物处方网络(DPN)中使用了NA(NA) 。我们介绍了NA术语,并提供了药物网络创建和提取结果的指南。目标:向NA读者介绍NA,作为研究药物使用的工具,展示如何在3个生成的药物网络上应用不同的NA措施。方法:我们使用挪威处方数据库(NorPD)来创建一个网络,描述挪威老年人在2013年1月1日的共同药物使用限制情况。我们使用挪威电子处方支持系统(FEST)来创建另一个严重的药物互动网络(DIs)。最后,我们建立了一个将这两个网络结合起来的网络,以显示药物与严重DDI的实际使用情况。我们利用这些网络来说明如何在药物网络中应用和解释不同的有用措施。结果:我们使用交互式网络图表,2013年1月1日,我们使用各种有用的网络措施来描述挪威老年人的共同反应。我们在药物网络中使用了一种有用的网络数据模型模型分析中,我们用了一个工具来进行最新的分析。我们用了一个用于了最新的数据库数据库。我们使用了一个数据库,在头版数据库中可以使用。我们使用了一个数据库中,在数据库中使用了一种最新的数据库中可以使用。我们使用一个有用的网络数据数据库数据库里使用。我们使用了一个有用的网络数据模型分析。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员