We present a geometric multigrid solver for the M1 model of radiative transfer without source terms. In radiative hydrodynamics applications, the radiative transfer needs to be solved implicitly because of the fast propagation speed of photons relative to the fluid velocity. The M1 model is hyperbolic and can be discretized with an HLL solver, whose time implicit integration can be done using a nonlinear Jacobi method. One can show that this iterative method always preserves the admissible states, such as positive radiative energy and reduced flux less than 1. To decrease the number of iterations required for the solver to converge, and therefore to decrease the computational cost, we propose a geometric multigrid algorithm. Unfortunately, this method is not able to preserve the admissible states. In order to preserve the admissible state states, we introduce a pseudo-time such that the solution of the problem on the coarse grid is the steady state of a differential equation in pseudo-time. We present preliminary results showing the decrease of the number of iterations and computational cost as a function of the number of multigrid levels used in the method. These results suggest that nonlinear multigrid methods can be used as a robust implicit solver for hyperbolic systems such as the M1 model.
翻译:我们为 M1 辐射传输模型提供了没有源术语的辐射性转移模型的几何多格求解。 在辐射性流体动力应用中,辐射性转移需要暗中解决,因为光子相对于流体速度的快速传播速度。 M1 模型是双曲的,可以与 HLLL 解答器分离,后者的时间隐含整合可以使用非线性雅各基方法完成。我们可以显示,这种迭代方法总是保留可允许状态,如正辐射能量和低于1. 的通量。为了减少求解器聚合所需的迭代数,从而减少计算成本,我们建议了几何多格化算法。不幸的是,这一方法无法保存可接受状态。为了维护可接受状态,我们引入了一个假时间,这样,粗网上问题的解决办法就是假时的差方程式的稳定状态。我们给出的初步结果显示,作为计算方法中所用多格水平的函数,它的数量和计算成本会减少。这些结果表明,作为模型中所使用的非直线性多格方法的解性多格方法,可以用作非直线性多格方法。