The development of Vietnamese language processing in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension tasks in Vietnamese with large sizes, such as UIT-ViQuAD and UIT-ViNewsQA. However, the datasets are not diverse in answer to serve the research. In this paper, we introduce the UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in the Vietnamese language. The UIT-ViWikiQA dataset is converted from the UIT-ViQuAD dataset, consisting of comprises 23.074 question-answers based on 5.109 passages of 174 Vietnamese articles from Wikipedia. We propose a conversion algorithm to create the dataset for sentence extraction-based machine reading comprehension and three types of approaches on the sentence extraction-based machine reading comprehension for Vietnamese. Our experiments show that the best machine model is XLM-R$_Large, which achieves an exact match (EM) score of 85.97% and an F1-score of 88.77% on our dataset. Besides, we analyze experimental results in terms of the question type in Vietnamese and the effect of context on the performance of the MRC models, thereby showing the challenges from the UIT-ViWikiQA dataset that we propose to the natural language processing community.


翻译:总的来说,越南语言处理的发展,特别是机器阅读理解的开发,引起了研究界的极大关注。近年来,在越南大型的机器阅读任务方面,如UIT-ViQUAD和UIT-ViNewsQA,有几套数据集用于越南的机器阅读理解任务。然而,数据集的答案并不不同,用于研究。在本文中,我们介绍了UIT-ViWikiQA,这是用于评价越南语言中刑罚提取机阅读理解的第一个数据集。UIT-ViWikiQA数据集是从UIT-ViQUAD数据集转换出来的,由23.074个问答组成,这些解答基于5.109段越南文中174越南文文章的段落。我们建议采用转换算法,为越南语的提取机阅读理解创建数据集,并采用三种方法。我们的实验显示,最好的机器模型是XLM-R$_Large, 其精确匹配(EM)85.97%的评分,以及F1-Score of quesque Exin the Viviginalal A developmentalalal ex the the welishal-MIT)

0
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
3+阅读 · 2018年4月18日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Top
微信扫码咨询专知VIP会员