We present BlazePose, a lightweight convolutional neural network architecture for human pose estimation that is tailored for real-time inference on mobile devices. During inference, the network produces 33 body keypoints for a single person and runs at over 30 frames per second on a Pixel 2 phone. This makes it particularly suited to real-time use cases like fitness tracking and sign language recognition. Our main contributions include a novel body pose tracking solution and a lightweight body pose estimation neural network that uses both heatmaps and regression to keypoint coordinates.
翻译:我们介绍一个轻量级的进化神经网络结构,用于人类的外观估计,适合移动装置的实时推断。在推断过程中,该网络为一个人制作了33个身体键点,每秒在像素2电话上运行30个以上的基点。这使得它特别适合实时使用诸如健身跟踪和手语识别等案例。我们的主要贡献包括一个新的身体构成跟踪解决方案,轻体重身体构成使用热图和回归到关键点坐标的估算神经网络。