Consider the universal gate set for quantum computing consisting of the gates X, CX, CCX, ${\omega}{\dagger}H$ and S. All of these gates have matrix entries in the ring $\mathbb Z [\frac{1}{2}, i]$, the smallest subring of the complex numbers containing $\frac{1}{2}$ and $i$. Amy, Glaudell, and Ross proved the converse, i.e., any unitary matrix with entries in $\mathbb Z [\frac{1}{2}, i]$ can be realized by a quantum circuit over the above gate set using at most one ancilla. In this paper, we give a finite presentation by generators and relations of $U_n(\mathbb Z [\frac{1}{2}, i])$, the group of unitary $n\times n$-matrices with entries in $\mathbb Z [\frac{1}{2}, i]$.
翻译:考虑由 X, CX, CCX, $_omegaundagger}H$ 和 S 组成的量子计算通用门。 所有这些门都有在 $mathbb Z [\ frac{1\%2}, i] 环中的矩阵条目。 $\ mathbb Z [\ frac{1\%2}, i], i], 这是包含$\ frac{ 1\%2} 美元和$i$ 的复合数字中最小的子串。 Amy, Glaudell 和 Ross 证明了反向, 即任何包含$\mathbb Z [\ frac{1\%2}, i] 的单一矩阵, $\\\ mathb Z [\\\\\\\\\\\\\\\\\\\\\\2} i] i] 的组合。