The tensor Ising model is a discrete exponential family used for modeling binary data on networks with not just pairwise, but higher-order dependencies. Here, the sufficient statistic is a multi-linear form of degree $p\ge 2$, designed to capture $p$-fold interactions between the binary variables sitting on the nodes of a network. A particularly useful class of tensor Ising models are the tensor Curie-Weiss models, where all $p$-tuples of nodes interact with the same intensity. Computing the maximum likelihood estimator (MLE) is computationally cumbersome in this model, due to the presence of an inexplicit normalizing constant in the likelihood. The standard alternative is to use the maximum pseudolikelihood estimator (MPLE). Both the MLE and the MPLE are consistent estimators of the natural parameter, provided the latter lies strictly above a certain threshold, which is slightly below $\log 2$. In this paper, we compute the Bahadur efficiencies of the MLE and the MPLE above the threshold, and derive the optimal sample size (number of nodes) needed for either of these tests to achieve significance. We show that the optimal sample size for the MPLE and the MLE agree if either $p=2$ or the null parameter is greater than or equal to $\log 2$. On the other hand, if $p\ge 3$ and the null parameter lies strictly between the threshold and $\log 2$, then the two differ for sufficiently large values of the alternative. For every fixed alternative above the threshold, the Bahadur asymptotic relative efficiency of the MLE with respect to the MPLE goes to $\infty$ as the null parameter approaches the threshold. Finally, we show a universality phenomenon, which says that these results extend beyond the tensor Curie-Weiss model, and hold for the more general class of Erd\H{o}s-R\'enyi hypergraph Ising models, where we can even allow for some sparsity in the underlying Erd\H{o}s-R\'enyi hypergraph.
翻译:拖拉度模型是一个离散的指数式家族, 用于在网络上建模二进制数据, 不仅对齐, 而且是更高顺序依赖。 在这里, 足够的统计数据是一个多线性格式 $p\ge 2 美元, 旨在捕捉位于网络节点上的二进制变量之间的双倍互动。 拖拉值模型的一个特别有用的类别是 Exor Curie- Weiss 模型, 所有的节点的美元- tuple 都与同一强度互动。 在此文件中, 我们计算最大概率估量( MLE) 的计算方法在计算模型中非常繁琐, 因为在概率上方存在一个不完全正常的常态常态 $2 。 标准替代品是使用最大伪观的天平比值 。 MLE 和 MPLE 的默认值比值比值稍小一些, 以比 美元稍低一点。 我们计算 mLE 和 MLE 的替代值效率, 和 以最优的基值比值 显示我们最优的底值 。