We present MatSim: a synthetic dataset, a benchmark, and a method for computer vision based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples (one-shot learning). The visual recognition of materials is essential to everything from examining food while cooking to inspecting agriculture, chemistry, and industrial products. In this work, we utilize giant repositories used by computer graphics artists to generate a new CGI dataset for material similarity. We use physics-based rendering (PBR) repositories for visual material simulation, assign these materials random 3D objects, and render images with a vast range of backgrounds and illumination conditions (HDRI). We add a gradual transition between materials to support applications with a smooth transition between states (like gradually cooked food). We also render materials inside transparent containers to support beverage and chemistry lab use cases. We then train a contrastive learning network to generate a descriptor that identifies unfamiliar materials using a single image. We also present a new benchmark for a few-shot material recognition that contains a wide range of real-world examples, including the state of a chemical reaction, rotten/fresh fruits, states of food, different types of construction materials, types of ground, and many other use cases involving material states, transitions and subclasses. We show that a network trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark, despite being tested on material classes that were not seen during training. The dataset, benchmark, code and trained models are available online.
翻译:我们介绍MatSim:一个合成数据集、一个基准和一个基于计算机视觉的方法,承认材料和纹理之间的相似性和过渡,侧重于在任何条件下使用一个或几个例子(一线学习)确定任何材料(一线学习),对材料的视觉识别对于从烹饪食品检查到农业、化学和工业产品检查等一切情况都至关重要。在这项工作中,我们利用计算机图形艺术家使用的巨型储存库,为材料相似性制作一个新的CGI数据集。我们使用基于物理的图像(PBR)储存库进行视觉材料模拟,分配这些材料随机的3D对象,并提供具有广泛背景和照明条件(HDRI)的图像。我们增加材料的逐渐转换,以支持国家间平稳过渡的应用(如逐渐烹饪食品)。我们还在透明容器内制作材料,以支持饮料和化学实验室使用案例。然后,我们培训一个对比式学习网络,以生成一个描述单一图像的不熟悉材料的描述性标本。我们还为经过检验的几线材料模型提供了新的基准,该模型包含广泛的真实世界范例,包括化学反应状态、腐蚀/新鲜的合成材料模型, 以及经过训练的基因结构中的其他数据类型。