The success of deep learning sparked interest in whether the brain learns by using similar techniques for assigning credit to each synaptic weight for its contribution to the network output. However, the majority of current attempts at biologically-plausible learning methods are either non-local in time, require highly specific connectivity motives, or have no clear link to any known mathematical optimization method. Here, we introduce Deep Feedback Control (DFC), a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment. The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of feedback connectivity patterns. To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing. By combining dynamical system theory with mathematical optimization theory, we provide a strong theoretical foundation for DFC that we corroborate with detailed results on toy experiments and standard computer-vision benchmarks.


翻译:深层学习的成功激发了人们对于大脑是否通过使用类似技术对每个神经重量的功率分配对网络输出的贡献的信用感知的兴趣。然而,目前大多数生物可观学习方法的尝试要么是非局部的,有时需要非常具体的连通动机,或者与任何已知的数学优化方法没有明确的联系。这里,我们引入了深反馈控制(DFC)这一新学习方法,利用反馈控制器驱动一个深神经网络,以匹配期望的产出目标,并且其控制信号可用于信用分配。由此形成的学习规则在空间和时间上是完全本地的,在广泛反馈连接模式方面,高斯-牛顿的优化是近似本地的。为了进一步强调其生物可信任性,我们把DFC与多兼容的金字塔神经模型与一个当地依赖电压的合成塑料规则联系起来,这与最近的斜度处理理论是一致的。通过将动态系统理论与数学优化理论相结合,我们为DFCC提供了坚实的理论基础,我们用详细的微量实验和标准计算机基准加以证实。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员