An $n$-length binary word is $q$-decreasing, $q\geq 1$, if every of its length maximal factor of the form $0^a1^b$ satisfies $a=0$ or $q\cdot a > b$.We show constructively that these words are in bijection with binary words having no occurrences of $1^{q+1}$, and thus they are enumerated by the $(q+1)$-generalized Fibonacci numbers. We give some enumerative results and reveal similarities between $q$-decreasing words and binary words having no occurrences of $1^{q+1}$ in terms of frequency of $1$ bit. In the second part of our paper, we provide an efficient exhaustive generating algorithm for $q$-decreasing words in lexicographic order, for any $q\geq 1$, show the existence of 3-Gray codes and explain how a generating algorithm for these Gray codes can be obtained. Moreover, we give the construction of a more restrictive 1-Gray code for $1$-decreasing words, which in particular settles a conjecture stated recently in the context of interconnection networks by E\u{g}ecio\u{g}lu and Ir\v{s}i\v{c}.
翻译:$n 长的二进单词是 $q+1 美元, $q\ geq 1 美元, 如果表格 $0 $a1, b美元满足 $=0 美元或 $q\ cdot a > b$ b$. 我们建设性地显示, 这些单词是二进单词, 没有出现 $qqq+1美元 美元, 因此它们被 $( q+1) 通用的 Fibonacci 数字所列出 。 我们给出了一些示例结果, 并揭示了 $q- Decreasing 单词和 $q+1 美元未出现频率为 1 美元 的二进单词之间的相似之处 。 在本文第二部分, 我们提供了一种高效的详尽算法, 在词汇顺序中, 任何 $q\ q+1 美元 +1 美元 美元, 则显示存在 3 gray 代码, 并解释如何获得这些灰代码的算法 。 此外, 我们给出了 $ $q+1 Q\\\ comreareasur ecompetion eles els ecompeal equel eles egregual e els eque eque eque eque eque eque legleg lex eque e eg eg eg eglegleg 。