Large Language Models (LLMs) are increasingly deployed in high-stakes financial domains, yet they suffer from specific, reproducible hallucinations when performing arithmetic operations. Current mitigation strategies often treat the model as a black box. In this work, we propose a mechanistic approach to intrinsic hallucination detection. By applying Causal Tracing to the GPT-2 XL architecture on the ConvFinQA benchmark, we identify a dual-stage mechanism for arithmetic reasoning: a distributed computational scratchpad in middle layers (L12-L30) and a decisive aggregation circuit in late layers (specifically Layer 46). We verify this mechanism via an ablation study, demonstrating that suppressing Layer 46 reduces the model's confidence in hallucinatory outputs by 81.8%. Furthermore, we demonstrate that a linear probe trained on this layer generalizes to unseen financial topics with 98% accuracy, suggesting a universal geometry of arithmetic deception.


翻译:大语言模型(LLMs)正日益被部署于高风险金融领域,但在执行算术运算时仍存在特定且可复现的幻觉。当前的缓解策略通常将模型视为黑箱。在本研究中,我们提出了一种机制性的内在幻觉检测方法。通过在ConvFinQA基准上对GPT-2 XL架构应用因果追踪,我们识别出算术推理的双阶段机制:中间层(L12-L30)中的分布式计算草稿区,以及深层(特别是第46层)中的决定性聚合电路。我们通过消融实验验证了该机制,证明抑制第46层可将模型对幻觉输出的置信度降低81.8%。此外,我们发现在该层训练的线性探针能以98%的准确率泛化至未见过的金融主题,这表明算术欺骗存在一种普适的几何结构。

0
下载
关闭预览

相关内容

在社会经济生活,银行、证券或保险业者从市场主体募集资金,并投资给其它市场主体的经济活动。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员