Recommender system is the most successful commercial technology in the past decade. Technical mammoth such as Temu, TikTok and Amazon utilize the technology to generate enormous revenues each year. Although there have been enough research literature on accuracy enhancement of the technology, explainable AI is still a new idea to the field. In 2022, the author of this paper provides a geometric interpretation of the matrix factorization-based methods and uses geometric approximation to solve the recommendation problem. We continue the research in this direction in this paper, and visualize the inner structure of the parameter space of matrix factorization technologies. We show that the parameters of matrix factorization methods are distributed within a hyper-ball. After further analysis, we prove that the distribution of the parameters is not multivariate normal.
翻译:推荐系统是过去十年中最成功的商业技术。像 Temu、TikTok 和 Amazon 这样的技术巨头每年利用该技术产生巨额收入。尽管关于提高技术准确性的研究文献已经足够多了,但可解释人工智能仍然是该领域的一种新思路。本文作者于 2022 年提供了矩阵分解型方法的几何解释并使用几何逼近解决推荐问题。本文在此方向上继续研究,并可视化了矩阵分解技术的参数空间的内部结构。我们展示了矩阵分解方法的参数分布在一个超球体内。经过进一步的分析,我们证明了参数的分布不是多元正态分布。