In this paper, we bring consumer theory to bear in the analysis of Fisher markets whose buyers have arbitrary continuous, concave, homogeneous (CCH) utility functions representing locally non-satiated preferences. The main tools we use are the dual concepts of expenditure minimization and indirect utility maximization. First, we use expenditure functions to construct a new convex program whose dual, like the dual of the Eisenberg-Gale program, characterizes the equilibrium prices of CCH Fisher markets. We then prove that the subdifferential of the dual of our convex program is equal to the negative excess demand in the associated market, which makes generalized gradient descent equivalent to computing equilibrium prices via t\^atonnement. Finally, we use our novel characterization of equilibrium prices via expenditure functions to show that a discrete t\^atonnement process converges at a rate of $O\left(\frac{1}{t}\right)$ in Fisher markets with continuous, strictly concave, homogeneous (CSCH) utility functions -- a class of utility functions beyond the class of CES utility functions, the largest class for which convergence results were previously known. CSCH Fisher markets include nested and mixed CES Fisher markets, thus providing a meaningful expansion of the space of Fisher markets that is solvable via t\^atonnement.


翻译:在本文中,我们用消费者理论来分析买家具有任意连续、连续、同质(CCH)功能代表当地不满足的优惠的渔业市场。我们使用的主要工具是支出最小化和间接效益最大化的双重概念。首先,我们使用支出功能来构建一个新的Convex方案,像Eisenberg-Gale方案的双重特征一样,这是CCH渔业市场的平衡价格的双重特征。然后,我们证明我们的共性方案双重功能的次区别等于相关市场的负过多需求,这种需求使得普遍梯度下降相当于通过t ⁇ atonononment计算平衡价格。最后,我们利用我们通过支出功能对平衡价格的新特征的描述来表明,一个离散的t ⁇ onnex进程在Fisher市场中以$left(frac{1 ⁇ t ⁇ right)的汇率趋同,其持续、严格一致(CSCH)的通用功能 -- -- 一种超出CESC公用事业功能类别的公用事业功能,这是最大的一类,其最大的类别是以前已知的通过Fisheral-CES市场中有意义的组合市场。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
5+阅读 · 2019年8月19日
Arxiv
0+阅读 · 2021年9月18日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Top
微信扫码咨询专知VIP会员