The powerful generative capacity of Large Language Models (LLMs) has instigated a paradigm shift in recommendation. However, existing generative models (e.g., OneRec) operate as implicit predictors, critically lacking the capacity for explicit and controllable reasoning-a key advantage of LLMs. To bridge this gap, we propose OneRec-Think, a unified framework that seamlessly integrates dialogue, reasoning, and personalized recommendation. OneRec-Think incorporates: (1) Itemic Alignment: cross-modal Item-Textual Alignment for semantic grounding; (2) Reasoning Activation: Reasoning Scaffolding to activate LLM reasoning within the recommendation context; and (3) Reasoning Enhancement, where we design a recommendation-specific reward function that accounts for the multi-validity nature of user preferences. Experiments across public benchmarks show state-of-the-art performance. Moreover, our proposed "Think-Ahead" architecture enables effective industrial deployment on Kuaishou, achieving a 0.159\% gain in APP Stay Time and validating the practical efficacy of the model's explicit reasoning capability.
翻译:大型语言模型(LLMs)强大的生成能力引发了推荐系统的范式转变。然而,现有的生成模型(如OneRec)作为隐式预测器运行,严重缺乏显式且可控的推理能力——这是LLMs的关键优势。为弥合这一差距,我们提出了OneRec-Think,一个统一框架,无缝整合了对话、推理和个性化推荐。OneRec-Think包含:(1)项目对齐:跨模态的项目-文本对齐,用于语义基础;(2)推理激活:推理脚手架,以在推荐上下文中激活LLM推理;以及(3)推理增强,我们设计了一个特定于推荐的奖励函数,该函数考虑了用户偏好的多有效性本质。在公共基准测试上的实验显示了最先进的性能。此外,我们提出的“前瞻性思考”架构支持在快手上的有效工业部署,实现了APP停留时间0.159%的提升,验证了模型显式推理能力的实际效能。