Despite recent progress in predicting biomarker trajectories from real clinical data, uncertainty in the predictions poses high-stakes risks (e.g., misdiagnosis) that limit their clinical deployment. To enable safe and reliable use of such predictions in healthcare, we introduce a conformal method for uncertainty-calibrated prediction of biomarker trajectories resulting from randomly-timed clinical visits of patients. Our approach extends conformal prediction to the setting of randomly-timed trajectories via a novel nonconformity score that produces prediction bands guaranteed to cover the unknown biomarker trajectories with a user-prescribed probability. We apply our method across a wide range of standard and state-of-the-art predictors for two well-established brain biomarkers of Alzheimer's disease, using neuroimaging data from real clinical studies. We observe that our conformal prediction bands consistently achieve the desired coverage, while also being tighter than baseline prediction bands. To further account for population heterogeneity, we develop group-conditional conformal bands and test their coverage guarantees across various demographic and clinically relevant subpopulations. Moreover, we demonstrate the clinical utility of our conformal bands in identifying subjects at high risk of progression to Alzheimer's disease. Specifically, we introduce an uncertainty-calibrated risk score that enables the identification of 17.5% more high-risk subjects compared to standard risk scores, highlighting the value of uncertainty calibration in real-world clinical decision making. Our code is available at github.com/vatass/ConformalBiomarkerTrajectories.


翻译:尽管近年来在利用真实临床数据预测生物标志物轨迹方面取得了进展,但预测中的不确定性带来了高风险(如误诊),限制了其在临床中的部署。为在医疗保健中安全可靠地使用此类预测,我们提出了一种保形方法,用于对患者随机时间临床访视产生的生物标志物轨迹进行不确定性校准预测。我们的方法通过一种新颖的非保形分数,将保形预测扩展到随机时间轨迹的场景,生成的预测带能够以用户指定的概率保证覆盖未知的生物标志物轨迹。我们使用来自真实临床研究的神经影像数据,将本方法应用于两种阿尔茨海默病经典脑生物标志物的多种标准及前沿预测模型。结果表明,我们的保形预测带始终达到预设的覆盖水平,且比基线预测带更紧凑。为进一步考虑人群异质性,我们开发了分组条件保形带,并在不同人口统计学和临床相关亚群中验证其覆盖保证。此外,我们展示了保形带在识别阿尔茨海默病高进展风险受试者方面的临床效用:通过引入一种不确定性校准风险评分,相比标准风险评分可多识别17.5%的高风险受试者,凸显了不确定性校准在真实世界临床决策中的价值。代码已发布于github.com/vatass/ConformalBiomarkerTrajectories。

0
下载
关闭预览

相关内容

具有动能的生命体。
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员