Rapid and versatile object manipulation in air is an open challenge. An energy-efficient and adaptive soft gripper combined with an agile aerial vehicle could revolutionize aerial robotic manipulation in areas such as warehousing. This paper presents a bio-inspired gripper powered by hydraulically amplified electrostatic actuators mounted to a quadcopter that can interact safely and naturally with its environment. Our gripping concept is motivated by an eagle's foot. Our custom multi-actuator concept is inspired by a scorpion tail design (consisting of a base electrode with pouches stacked adjacently) and spider-inspired joints (classic pouch motors with a flexible hinge layer). A hybrid of these two designs realizes a higher force output under moderate deflections of up to 25{\deg} compared to single-hinge concepts. In addition, sandwiching the hinge layer improves the robustness of the gripper. For the first time, we show that soft manipulation in air is possible using electrostatic actuation. This study demonstrates the potential of untethered hydraulically amplified actuators in aerial robotic manipulation. Our proof of concept opens up the use of hydraulic electrostatic actuators in mobile aerial systems.
翻译:快速和多功能天体操作是一个公开的挑战。 一个节能和适应性软控制器,加上一个灵活飞行器,可以使仓储等领域的空中机器人操作革命性。 本文展示了一种由液压放大电动电动驱动器组成的生物激发的抓起器,该控动器安装在一个可以安全、自然地与环境互动的四角形机上。 我们的抓紧概念是由鹰脚驱动的。 我们的定制多动能概念来自一个蝎尾设计(由一个基电极与相邻堆积的邮袋组成一个基电极)和蜘蛛激发的连接(带有灵活链杆的经典邮袋发动机) 。 这两种设计的一个混合体能在中度偏移下实现了高达25毫秒的较高力力驱动器。 此外, 配对电动电动电动电动动作, 我们第一次显示, 空气中的软操纵是可能的。 这项研究表明, 在航空机器人操纵中, 我们的动作概念打开了液压电动电动系统。