Large Language Models (LLMs) enable generative social simulations that can capture culturally informed, norm-guided interaction on online social platforms. We build a technology community simulation modeled on Voat, a Reddit-like alt-right news aggregator and discussion platform active from 2014 to 2020. Using the YSocial framework, we seed the simulation with a fixed catalog of technology links sampled from Voat's shared URLs (covering 30+ domains) and calibrate parameters to Voat's v/technology using samples from the MADOC dataset. Agents use a base, uncensored model (Dolphin 3.0, based on Llama 3.1 8B) and concise personas (demographics, political leaning, interests, education, toxicity propensity) to generate posts, replies, and reactions under platform rules for link and text submissions, threaded replies and daily activity cycles. We run a 30-day simulation and evaluate operational validity by comparing distributions and structures with matched Voat data: activity patterns, interaction networks, toxicity, and topic coverage. Results indicate familiar online regularities: similar activity rhythms, heavy-tailed participation, sparse low-clustering interaction networks, core-periphery structure, topical alignment with Voat, and elevated toxicity. Limitations of the current study include the stateless agent design and evaluation based on a single 30-day run, which constrains external validity and variance estimates. The simulation generates realistic discussions, often featuring toxic language, primarily centered on technology topics such as Big Tech and AI. This approach offers a valuable method for examining toxicity dynamics and testing moderation strategies within a controlled environment.
翻译:大型语言模型(LLM)支持生成式社会模拟,能够捕捉在线社交平台上受文化影响、规范引导的互动行为。本研究构建了一个基于Voat(一个在2014年至2020年间活跃的类Reddit另类右翼新闻聚合与讨论平台)的技术社区模拟。利用YSocial框架,我们从Voat共享URL中采样技术类链接(覆盖30余个域名)作为固定目录初始化模拟,并基于MADOC数据集样本对Voat的v/technology板块参数进行校准。智能体采用基础未审查模型(基于Llama 3.1 8B的Dolphin 3.0)与简洁身份设定(人口统计特征、政治倾向、兴趣领域、教育背景、毒性倾向),在平台规则约束下生成链接/文本提交、线程式回复及符合日常活动周期的互动。通过运行30天模拟,我们从活动模式、交互网络、毒性程度及话题覆盖等维度,对比模拟数据与匹配的Voat真实数据的分布与结构特征,以评估操作有效性。结果显示模拟复现了典型的在线规律:相似的活动节律、重尾化参与模式、稀疏低聚类的交互网络、核心-边缘结构、与Voat一致的话题分布以及较高的毒性水平。当前研究的局限性包括无状态智能体设计及基于单次30天运行的评估,这制约了外部效度与方差估计的可靠性。模拟生成了以科技话题(如大型科技企业与人工智能)为中心的现实讨论,其中频繁出现毒性语言。该方法为在受控环境中探究毒性动态及检验内容治理策略提供了有效途径。