The 4th edition of the Montreal AI Ethics Institute's The State of AI Ethics captures the most relevant developments in the field of AI Ethics since January 2021. This report aims to help anyone, from machine learning experts to human rights activists and policymakers, quickly digest and understand the ever-changing developments in the field. Through research and article summaries, as well as expert commentary, this report distills the research and reporting surrounding various domains related to the ethics of AI, with a particular focus on four key themes: Ethical AI, Fairness & Justice, Humans & Tech, and Privacy. In addition, The State of AI Ethics includes exclusive content written by world-class AI Ethics experts from universities, research institutes, consulting firms, and governments. Opening the report is a long-form piece by Edward Higgs (Professor of History, University of Essex) titled "AI and the Face: A Historian's View." In it, Higgs examines the unscientific history of facial analysis and how AI might be repeating some of those mistakes at scale. The report also features chapter introductions by Alexa Hagerty (Anthropologist, University of Cambridge), Marianna Ganapini (Faculty Director, Montreal AI Ethics Institute), Deborah G. Johnson (Emeritus Professor, Engineering and Society, University of Virginia), and Soraj Hongladarom (Professor of Philosophy and Director, Center for Science, Technology and Society, Chulalongkorn University in Bangkok). This report should be used not only as a point of reference and insight on the latest thinking in the field of AI Ethics, but should also be used as a tool for introspection as we aim to foster a more nuanced conversation regarding the impacts of AI on the world.


翻译:蒙特利尔AI伦理学研究所第四版《AI伦理学状况》反映了自2021年1月以来AI伦理学领域最相关的事态发展。本报告旨在帮助任何人,从机器学习专家到人权活动家和决策者,迅速消化和理解该领域不断变化的事态发展。通过研究和文章摘要以及专家评论,本报告总结了围绕与AI伦理学有关的各个领域的研究和报告,特别侧重于四个关键主题:道德的AI、公平与正义、人类和科技以及隐私。此外,AI伦理学状况包括来自大学、研究机构、咨询公司和政府的世界级AI伦理学专家撰写的独家内容。报告由Edward Higgs(历史教授、埃塞克斯大学)撰写的长篇文章,题为“AI和脸:历史学家的观点。” Higgs只研究面部分析的不科学史史史,以及AI可能重复一些规模上的错误。报告还专门介绍了Alexa Hagelom AI伦理学专家撰写的章节, Angerovor Studiocial Studical, Andoral Studio Study Study Study Study Study Study Study Study Study Study Students, the Gal Study Study Study Study Study Study Students, the Study Study Study Study Study Study Stribors, the Study Study Study Study Study Stribors., the Students., the Stribors., the Students, the Strifors, the Stribribors. and Stribuds., the Stribuds., the Strish and Stribuds. and Stribuds., the Stribuds., the Strial Stribal Studs., the Studs., the Studs., the Stribal Stribuds. Studs. Stribuds.I. Study Studs.I. and Strial Studs. Strial Strial Strial Studs.I and Strial Studs. and Strim Strim Stow

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员