Previous research on refugee status adjudications has shown that prediction of the outcome of an application can be derived from very few features with satisfactory accuracy. Recent research work has achieved between 70 and 90% accuracy using text analytics on various legal fields among which refugee status determination. Some studies report predictions derived from the judge identity only. Additionally most features used for prediction are non-substantive and external features ranging from news reports, date and time of the hearing or weather. On the other hand, literature shows that noise is ubiquitous in human judgments and significantly affects the outcome of decisions. It has been demonstrated that noise is a significant factor impacting legal decisions. We use the term "noise" in the sense described by D. Kahneman, as a measure of how human beings are unavoidably influenced by external factors when making a decision. In the context of refugee status determination, it means for instance that two judges would take different decisions when presented with the same application. This article explores ways that machine learning can help reduce noise in refugee law decision making. We are not suggesting that this proposed methodology should be exclusive from other approaches to improve decisions such as training of decision makers, skills acquisition or judgment aggregation, but rather that it is a path worth exploring. We investigate how artificial intelligence and specifically data-driven applications can be used to benefit all parties involved in refugee status adjudications. We specifically look at decisions taken in Canada and in the United States. Our research aims at reducing arbitrariness and unfairness that derive from noisy decisions, based on the assumption that if two cases or applications are alike they should be treated in the same way and induce the same outcome.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
专知会员服务
53+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月7日
Arxiv
0+阅读 · 2023年10月6日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员