With the growing popularity of intelligent assistants (IAs), evaluating IA quality becomes an increasingly active field of research. This paper identifies and quantifies the feedback effect, a novel component in IA-user interactions: how the capabilities and limitations of the IA influence user behavior over time. First, we demonstrate that unhelpful responses from the IA cause users to delay or reduce subsequent interactions in the short term via an observational study. Next, we expand the time horizon to examine behavior changes and show that as users discover the limitations of the IA's understanding and functional capabilities, they learn to adjust the scope and wording of their requests to increase the likelihood of receiving a helpful response from the IA. Our findings highlight the impact of the feedback effect at both the micro and meso levels. We further discuss its macro-level consequences: unsatisfactory interactions continuously reduce the likelihood and diversity of future user engagements in a feedback loop.
翻译:随着智能助手(IA)的日益普及,评估IA质量已成为一个越来越活跃的研究领域。本文确定并量化了反馈效应,这是IA-用户交互中的一种新型组成部分:如何因IA的能力和限制而影响用户行为。首先,我们通过观察研究证明,IA提供的无帮助响应会导致用户在短期内延迟或减少后续的交互。接下来,我们扩展了时间范围,以研究行为变化,并展示了随着用户发现IA的理解和功能能力的限制,他们学会调整其请求的范围和措辞,以增加从IA获得有帮助响应的可能性。我们的研究结果突出了反馈效应在微观和中观层面上的影响。我们进一步讨论了它在宏观层面上的影响:不令人满意的交互会连续降低未来用户参与的可能性和多样性,形成一个反馈循环。