Recently, the application of machine learning models has gained momentum in natural sciences and engineering, which is a natural fit due to the abundance of data in these fields. However, the modeling of physical processes from simulation data without first principle solutions remains difficult. Here, we present a Graph Neural Networks approach towards accurate modeling of complex 3D granular flow simulation processes created by the discrete element method LIGGGHTS and concentrate on simulations of physical systems found in real world applications like rotating drums and hoppers. We discuss how to implement Graph Neural Networks that deal with 3D objects, boundary conditions, particle - particle, and particle - boundary interactions such that an accurate modeling of relevant physical quantities is made possible. Finally, we compare the machine learning based trajectories to LIGGGHTS trajectories in terms of particle flows and mixing entropies.
翻译:最近,机器学习模型的应用在自然科学和工程方面获得了势头,由于这些领域的数据丰富,自然地具有适应性,然而,从模拟数据中模拟物理过程而没有首先原则解决办法的模型化仍然很困难。在这里,我们提出了一个图形神经网络方法,对离散元素法LIGGGHTS产生的复杂的3D颗粒流模拟过程进行精确的模型化模型化,并侧重于模拟在诸如旋转桶和 ⁇ 等现实世界应用中发现的物理系统。我们讨论如何实施处理3D对象、边界条件、粒子和粒子-边界相互作用的图形神经网络,以便能够准确模拟相关的物理数量。最后,我们将基于机器学习的轨迹与LIGGGGHTS粒子流和混合寄生体等实际应用中发现的物理系统模拟。我们讨论了如何实施处理3D对象、边界条件、粒子-粒子和粒子-边界相互作用,以便能够对相关物理数量进行精确的模型化。我们把机器学习的轨迹与LIGGGGGHTSSTs轨道进行比较。