This paper proposes PolyProtect, a method for protecting the sensitive face embeddings that are used to represent people's faces in neural-network-based face verification systems. PolyProtect transforms a face embedding to a more secure template, using a mapping based on multivariate polynomials parameterised by user-specific coefficients and exponents. In this work, PolyProtect is evaluated on two open-source face verification systems in a mobile application context, under the toughest threat model that assumes a fully-informed attacker with complete knowledge of the system and all its parameters. Results indicate that PolyProtect can be tuned to achieve a satisfactory trade-off between the recognition accuracy of the PolyProtected face verification system and the irreversibility of the PolyProtected templates. Furthermore, PolyProtected templates are shown to be effectively unlinkable, especially if the user-specific parameters employed in the PolyProtect mapping are selected in a non-naive manner. The evaluation is conducted using practical methodologies with tangible results, to present realistic insight into the method's robustness as a face embedding protection scheme in practice. The code to fully reproduce this work is available at: https://gitlab.idiap.ch/bob/bob.paper.polyprotect_2021.
翻译:本文提出“ 聚合保护”, 这是一种保护敏感面部嵌入器, 用于在神经网络的面部验证系统中代表人们面部的方法。 聚合保护将面部嵌入到一个更安全的模板中, 使用基于用户特定系数和引言参数的多变量多变量多元值参数的映射。 在这项工作中, 对两个在移动应用背景下的开放源面部验证系统进行了评估, 该模型假设一个完全了解系统及其所有参数的完全知情攻击者为最严峻的威胁模型。 结果表明, 聚合保护可以调整面部验证系统的识别准确性与多变量保护模板的不可逆转性之间实现令人满意的交易。 此外, 聚合保护模板被证明是有效的不可连接的, 特别是如果聚源面Protect绘图中使用的用户特定参数是以非惯用方式选择的。 评估使用实用方法进行, 并取得实实在在的结果, 以展示对方法的切合实际的洞察度, 将该方法作为面部/ 保护性纸质/ 。 在实践中, http://chpopbob 中可以完全的套件。