This paper proposes PolyProtect, a method for protecting the sensitive face embeddings that are used to represent people's faces in neural-network-based face verification systems. PolyProtect transforms a face embedding to a more secure template, using a mapping based on multivariate polynomials parameterised by user-specific coefficients and exponents. In this work, PolyProtect is evaluated on two open-source face verification systems in a mobile application context, under the toughest threat model that assumes a fully-informed attacker with complete knowledge of the system and all its parameters. Results indicate that PolyProtect can be tuned to achieve a satisfactory trade-off between the recognition accuracy of the PolyProtected face verification system and the irreversibility of the PolyProtected templates. Furthermore, PolyProtected templates are shown to be effectively unlinkable, especially if the user-specific parameters employed in the PolyProtect mapping are selected in a non-naive manner. The evaluation is conducted using practical methodologies with tangible results, to present realistic insight into the method's robustness as a face embedding protection scheme in practice. The code to fully reproduce this work is available at: https://gitlab.idiap.ch/bob/bob.paper.polyprotect_2021.


翻译:本文提出“ 聚合保护”, 这是一种保护敏感面部嵌入器, 用于在神经网络的面部验证系统中代表人们面部的方法。 聚合保护将面部嵌入到一个更安全的模板中, 使用基于用户特定系数和引言参数的多变量多变量多元值参数的映射。 在这项工作中, 对两个在移动应用背景下的开放源面部验证系统进行了评估, 该模型假设一个完全了解系统及其所有参数的完全知情攻击者为最严峻的威胁模型。 结果表明, 聚合保护可以调整面部验证系统的识别准确性与多变量保护模板的不可逆转性之间实现令人满意的交易。 此外, 聚合保护模板被证明是有效的不可连接的, 特别是如果聚源面Protect绘图中使用的用户特定参数是以非惯用方式选择的。 评估使用实用方法进行, 并取得实实在在的结果, 以展示对方法的切合实际的洞察度, 将该方法作为面部/ 保护性纸质/ 。 在实践中, http://chpopbob 中可以完全的套件。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
21+阅读 · 2021年8月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
5+阅读 · 2020年3月26日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
21+阅读 · 2021年8月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员