Deterministic auctions are attractive in practice due to their transparency, simplicity, and ease of implementation, motivating a sharper understanding of when they can attain the same outcomes as randomized mechanisms. We study deterministic implementation in single-item auctions under two notions of outcomes: (revenue, welfare) pairs and interim allocations. For (revenue, welfare) pairs, we show a separation in discrete settings: there exists a pair implementable by a deterministic Bayesian incentive-compatible (BIC) auction but not by any deterministic dominant-strategy incentive-compatible (DSIC) auction. For continuous atomless priors, we identify conditions under which deterministic DSIC auctions are equivalent to randomized BIC auctions in terms of achievable outcomes. For interim allocations, under a strict monotonicity condition, we establish a deterministic analogue of Border's theorem for two bidders, providing a necessary and sufficient condition for deterministic DSIC implementability. Using this characterization, we exhibit an interim allocation implementable by a randomized BIC auction but not by any deterministic DSIC auction.


翻译:确定性拍卖因其透明度高、操作简单且易于实施而在实践中备受青睐,这促使我们更深入地探究其在何种条件下能够达到与随机机制相同的效果。本文研究单物品拍卖中两种结果概念下的确定性实施:(收益,社会福利)对与事前分配。针对(收益,社会福利)对,我们在离散设定中揭示了分离现象:存在可通过确定性贝叶斯激励相容拍卖实现,但无法通过任何确定性占优策略激励相容拍卖实现的配对。对于连续无原子先验分布,我们确定了确定性占优策略激励相容拍卖在可达结果方面等价于随机贝叶斯激励相容拍卖的条件。针对事前分配,在严格单调性条件下,我们为两个竞标者建立了博德定理的确定性类比,给出了确定性占优策略激励相容可实施性的充要条件。基于该特征描述,我们展示了一个可通过随机贝叶斯激励相容拍卖实现,但无法通过任何确定性占优策略激励相容拍卖实现的事前分配。

0
下载
关闭预览

相关内容

【ICML2025】通用智能体需要世界模型
专知会员服务
22+阅读 · 6月4日
时间序列计量经济学
专知会员服务
49+阅读 · 2022年4月8日
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
29+阅读 · 2020年10月2日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】通用智能体需要世界模型
专知会员服务
22+阅读 · 6月4日
时间序列计量经济学
专知会员服务
49+阅读 · 2022年4月8日
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
29+阅读 · 2020年10月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员