In order to address the increasing demands of real-world applications, the research for knowledge-intensive NLP (KI-NLP) should advance by capturing the challenges of a truly open-domain environment: web scale knowledge, lack of structure, inconsistent quality, and noise. To this end, we propose a new setup for evaluating existing KI-NLP tasks in which we generalize the background corpus to a universal web snapshot. We repurpose KILT, a standard KI-NLP benchmark initially developed for Wikipedia, and ask systems to use a subset of CCNet - the Sphere corpus - as a knowledge source. In contrast to Wikipedia, Sphere is orders of magnitude larger and better reflects the full diversity of knowledge on the Internet. We find that despite potential gaps of coverage, challenges of scale, lack of structure and lower quality, retrieval from Sphere enables a state-of-the-art retrieve-and-read system to match and even outperform Wikipedia-based models on several KILT tasks - even if we aggressively filter content that looks like Wikipedia. We also observe that while a single dense passage index over Wikipedia can outperform a sparse BM25 version, on Sphere this is not yet possible. To facilitate further research into this area, and minimise the community's reliance on proprietary black box search engines, we will share our indices, evaluation metrics and infrastructure.
翻译:为了应对现实世界应用中日益增加的需求,知识密集型NLP(KI-NLP)的研究应该通过抓住真正开放的环境的挑战来推进:网络规模知识、缺乏结构、质量不一致和噪音。为此,我们提议为评估现有的KI-NLP任务建立一个新的设置,我们在这个设置中将背景材料推广到通用网络快照中。我们重新使用KILT,即最初为维基百科开发的KI-NLP标准基准,并要求各系统使用CCNet的一个子集——Sphere Pasy(Sphere)作为知识来源。与维基百科不同,Sphere是规模更大的,更好地反映了互联网知识的充分多样性。我们发现,尽管覆盖面存在潜在的缺口、规模挑战、结构缺乏和质量较低,从Spherere(Sphere)检索能够使最新的最新检索和阅读系统匹配甚至超越以维基百科为基础的模式,即使我们像维基百科那样的过滤器内容。我们还注意到,在维基百科的单一的密集通过指数的同时,在网上的单个通过指数可以进一步搜索,但Sprestimbre Stamp Stamp Streal Stabilital Stapital Stapital Stapital shabre Stapital shabrest we best werest we best we be srest finds werest tost first shaprestitititititital bestititital shapre shapre shaprest shabrest shabilital best shabrest ress ress ress ressbre ressbre ress ress shabred wervibre ressbre ress ress ress ress ress ress ress ress ressmdslupdsbbbbal comp ress restipal ress ressbal ress ress ress ress。