Alzheimer's disease (AD) is the main cause of dementia which is accompanied by loss of memory and may lead to severe consequences in peoples' everyday life if not diagnosed on time. Very few works have exploited transformer-based networks and despite the high accuracy achieved, little work has been done in terms of model interpretability. In addition, although Mini-Mental State Exam (MMSE) scores are inextricably linked with the identification of dementia, research works face the task of dementia identification and the task of the prediction of MMSE scores as two separate tasks. In order to address these limitations, we employ several transformer-based models, with BERT achieving the highest accuracy accounting for 85.56%. Concurrently, we propose an interpretable method to detect AD patients based on siamese networks reaching accuracy up to 81.18%. Next, we introduce two multi-task learning models, where the main task refers to the identification of dementia (binary classification), while the auxiliary one corresponds to the identification of the severity of dementia (multiclass classification). Our model obtains accuracy equal to 84.99% on the detection of AD patients in the multi-task learning setting. Finally, we present some new methods to identify the linguistic patterns used by AD patients and non-AD ones, including text statistics, vocabulary uniqueness, word usage, correlations via a detailed linguistic analysis, and explainability techniques (LIME). Findings indicate significant differences in language between AD and non-AD patients.


翻译:阿尔茨海默氏病(AD)是痴呆症的主要原因,伴随着记忆丧失,如果没有及时诊断,可能会给人们日常生活带来严重后果。很少有作品利用了以变压器为基础的网络,尽管取得了很高的精确度,但在模型解释能力方面却做的工作很少。此外,尽管迷你脑状态Exam(MMSE)分数与痴呆症的识别有着不可分割的联系,但研究工作面临着痴呆症识别任务和预测MMSE分数作为两项不同任务的任务。为了解决这些限制,我们采用了若干以变压器为基础的模型,BERT实现了85.56%的最高精确度计算。与此同时,我们提出了一种可解释的方法,用以根据Siameese网络检测AD病人的可解释性达到81.18%。接下来,我们引入了两个多任务学习模式,其中主要任务涉及确定痴呆症(双轨分类),而辅助任务与确定 dementia分数(多级分类)的严重程度相匹配。我们的模式在检测ADU型病人的不精确度方面获得了一定的精确度,通过84.99%的精确度,最后我们建议基于Sia-ADADADLI统计的精确度中所使用的方法,并用了大量的精确度。我们所使用的语言统计方法,在确定了对等的精确度上,在语言-ADADALDADADAD-AD-AD-ADLI的精确度上所使用的方法中,在使用方式中,在最后的精确度上确定了一种独特的分析方法中,在使用。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
4+阅读 · 2018年5月4日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员