This article reviews recent progress in high-dimensional bootstrap. We first review high-dimensional central limit theorems for distributions of sample mean vectors over the rectangles, bootstrap consistency results in high dimensions, and key techniques used to establish those results. We then review selected applications of high-dimensional bootstrap: construction of simultaneous confidence sets for high-dimensional vector parameters, multiple hypothesis testing via stepdown, post-selection inference, intersection bounds for partially identified parameters, and inference on best policies in policy evaluation. Finally, we also comment on a couple of future research directions.
翻译:文章回顾了高维靴子的最近进展。 我们首先审查用于矩形上平均矢量样本分布的高维中枢参数, 靴子链子一致性在高维方面的结果, 以及用来确定这些结果的关键技术。 然后我们审查高维靴子的选定应用: 建造高维矢量参数的同步置信装置, 通过下划、 选后推论进行多重假设测试, 部分确定参数的交叉界限, 以及政策评估中最佳政策的推论。 最后, 我们还评论了几个未来研究方向 。