Molecular photoswitches are the foundation of light-activated drugs. A key photoswitch is azobenzene, which exhibits trans-cis isomerism in response to light. The thermal half-life of the cis isomer is of crucial importance, since it controls the duration of the light-induced biological effect. Here we introduce a computational tool for predicting the thermal half-lives of azobenzene derivatives. Our automated approach uses a fast and accurate machine learning potential trained on quantum chemistry data. Building on well-established earlier evidence, we argue that thermal isomerization proceeds through rotation mediated by intersystem crossing, and incorporate this mechanism into our automated workflow. We use our approach to predict the thermal half-lives of 19,000 azobenzene derivatives. We explore trends and tradeoffs between barriers and absorption wavelengths, and open-source our data and software to accelerate research in photopharmacology.
翻译:分子光电开关是光活药物的基础。 关键的光电开关是azobenzene, 显示对光的反射异构体。 cis异构体的热半衰期至关重要, 因为它控制光诱生物效应的持续时间。 这里我们引入了一个计算工具, 用于预测azobenzene衍生物的热半衰期。 我们的自动化方法使用了在量子化学数据方面受过训练的快速和准确的机器学习潜力。 根据早期的确凿证据, 我们争论说, 热异构化是通过由跨系统媒介进行循环介导的, 并将这一机制纳入我们的自动工作流程中。 我们使用我们的方法预测19,000个zenzenze衍生物的热半衰期。 我们探索障碍和吸收波长之间的趋势和权衡, 并开源我们的数据和软件, 以加快光药学研究。