In this paper, we explore various multilingual and Russian pre-trained transformer-based models for the Dialogue Evaluation 2021 shared task on headline selection. Our experiments show that the combined approach is superior to individual multilingual and monolingual models. We present an analysis of a number of ways to obtain sentence embeddings and learn a ranking model on top of them. We achieve the result of 87.28% and 86.60% accuracy for the public and private test sets respectively.
翻译:在本文中,我们探讨了各种多语言和俄罗斯预先培训的2021年对话评价的变压器模型,共同承担的头条选择任务。我们的实验表明,综合方法优于单个多语言和单一语言模式。我们分析了获得判决嵌入和学习排序模型的若干方法。我们分别实现了公共和私人测试组87.28%和86.60%的准确率。