As a critical task for large-scale commercial recommender systems, reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. Reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users' demands. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the counterfactual context -- the position and the alignment of the items in the reranked lists. In this work, we propose a novel pairwise reranking framework, Context-aware Reranking with Utility Maximization for recommendation (CRUM), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the counterfactual context modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that CRUM significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.


翻译:作为大型商业推荐人系统的一项关键任务,重新排序显示了通过发现项目之间的相互影响来改进建议结果的潜力。重新排序将项目从上一个排名阶段的初始排名列表中重新排列,以更好地满足用户的需求。然而,理想的重新排序算法不应像大多数现有方法那样考虑初步列表的背景,而应考虑反事实背景 -- -- 重新排序列表中项目的位置和对齐。在这项工作中,我们提议了一个新颖的对称重新排序框架,即 " 环境认知重新排序与使用最大化的建议(CRUM) ",在重新排序后最大限度地实现总体效用。具体地说,我们首先设计一个面向实用性的评价员,应用Bi-LSTM和图形关注机制,通过反现实性背景模型来估计清单的效用。然后,在评估员的指导下,我们提出一个配对式的重新排序模型,通过交换错位项目配对,找到每个项目最合适的位置。关于两个基准数据集的广泛试验和一个专有的地真实世界数据集,表明CRIM在基于通用度的模型和指标模型中都大大超越了州通用性。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
已删除
将门创投
5+阅读 · 2017年11月20日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Arxiv
15+阅读 · 2021年6月27日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员