Balancing safety and efficiency when planning in dense traffic is challenging. Interactive behavior planners incorporate prediction uncertainty and interactivity inherent to these traffic situations. Yet, their use of single-objective optimality impedes interpretability of the resulting safety goal. Safety envelopes which restrict the allowed planning region yield interpretable safety under the presence of behavior uncertainty, yet, they sacrifice efficiency in dense traffic due to conservative driving. Studies show that humans balance safety and efficiency in dense traffic by accepting a probabilistic risk of violating the safety envelope. In this work, we adopt this safety objective for interactive planning. Specifically, we formalize this safety objective, present the Risk-Constrained Robust Stochastic Bayesian Game modeling interactive decisions satisfying a maximum risk of violating a safety envelope under uncertainty of other traffic participants' behavior and solve it using our variant of Multi-Agent Monte Carlo Tree Search. We demonstrate in simulation that our approach outperforms baselines approaches, and by reaching the specified violation risk level over driven simulation time, provides an interpretable and tunable safety objective for interactive planning.
翻译:在密集交通中规划时,安全与效率平衡是具有挑战性的。互动行为规划者结合了这些交通情况所固有的预测不确定性和互动性。然而,他们使用单一目标的最佳性妨碍了对由此而来的安全目标的解释。限制允许的规划区域的安全封套在行为不确定的情况下会产生可解释的安全,然而,由于保守的驾驶方式,它们牺牲了密集交通的效率。研究显示,人类在密集交通中平衡安全与效率,接受违反安全封套的概率风险。在这项工作中,我们采用这一安全目标进行互动规划。具体地说,我们正式确定了这一安全目标,提出了风险-受训练的Robust Stopchat Stockast Bayesian游戏互动决策模型,满足了在其他交通参与者行为不确定的情况下违反安全封的最大风险,并利用我们多官蒙特卡洛树搜索的变式方法加以解决。我们在模拟中证明,我们的方法超过了基线方法,并且达到了在驱动的模拟时间后达到规定的违规风险水平,为互动规划提供了一个可解释和金枪鱼可安全的目标。