Diffusion models have become a central tool in deep generative modeling, but standard formulations rely on a single network and a single diffusion schedule to transform a simple prior, typically a standard normal distribution, into the target data distribution. As a result, the model must simultaneously represent the global structure of the distribution and its fine-scale local variations, which becomes difficult when these scales are strongly mismatched. This issue arises both in natural images, where coarse manifold-level structure and fine textures coexist, and in low-dimensional distributions with highly concentrated local structure. To address this issue, we propose Residual Prior Diffusion (RPD), a two-stage framework in which a coarse prior model first captures the large-scale structure of the data distribution, and a diffusion model is then trained to represent the residual between the prior and the target data distribution. We formulate RPD as an explicit probabilistic model with a tractable evidence lower bound, whose optimization reduces to the familiar objectives of noise prediction or velocity prediction. We further introduce auxiliary variables that leverage information from the prior model and theoretically analyze how they reduce the difficulty of the prediction problem in RPD. Experiments on synthetic datasets with fine-grained local structure show that standard diffusion models fail to capture local details, whereas RPD accurately captures fine-scale detail while preserving the large-scale structure of the distribution. On natural image generation tasks, RPD achieved generation quality that matched or exceeded that of representative diffusion-based baselines and it maintained strong performance even with a small number of inference steps.
翻译:扩散模型已成为深度生成建模的核心工具,但标准公式依赖于单一网络和单一扩散调度,将简单先验(通常是标准正态分布)转换为目标数据分布。因此,模型必须同时表示分布的全局结构及其精细尺度的局部变化,当这些尺度严重不匹配时,这会变得困难。这一问题既出现在自然图像中(其中粗粒度流形级结构与精细纹理共存),也出现在具有高度集中局部结构的低维分布中。为解决此问题,我们提出了残差先验扩散(RPD),这是一个两阶段框架:首先由粗粒度先验模型捕获数据分布的大尺度结构,然后训练扩散模型来表示先验与目标数据分布之间的残差。我们将RPD构建为一个具有可处理证据下界的显式概率模型,其优化可简化为熟悉的噪声预测或速度预测目标。我们进一步引入了利用先验模型信息的辅助变量,并从理论上分析了它们如何降低RPD中预测问题的难度。在具有细粒度局部结构的合成数据集上的实验表明,标准扩散模型无法捕获局部细节,而RPD在保持分布大尺度结构的同时,能准确捕获精细尺度的细节。在自然图像生成任务中,RPD实现了与代表性基于扩散的基线模型相当或更优的生成质量,并且即使在少量推理步数下仍保持强劲性能。