Single Secret Leader Elections have recently been proposed as an improved leader election mechanism for proof-of-stake (PoS) blockchains. However, the security gain they provide has not been quantified. In this work, we present a comparison of PoS longest-chain protocols that are based on Single Secret Leader Elections (SSLE) - that elect exactly one leader per round - versus those based on Probabilistic Leader Elections (PLE) - where one leader is elected on expectation. Our analysis shows that when considering the private attack - the worst attack on longest-chain protocols - the security gained from using SSLE is substantial: the settlement time is decreased by roughly 25% for a 33% or 25% adversary. Furthermore, when considering grinding attacks, we find that the security threshold is increased by 10% (from 0.26 in the PLE case to 0.36 inthe SSLE case) and the settlement time is decreased by roughly 70% for a 20% adversary in the SSLE case.


翻译:最近有人提议将单一秘密领导人选举作为一种改进的领先选举机制,用于证明获得安全链。然而,他们所提供的安全收益尚未量化。在这项工作中,我们比较了以单一秘密领导人选举(SSLE)为基础的《POS最长时间的链协议》,每轮选举一名领导人,而根据概率领袖选举(PLE),每轮选举一名领导人是按预期选举的。我们的分析表明,在考虑私人袭击(最坏的对最晚链协议的袭击)时,使用SSLE获得的安全是巨大的:33%或25%的对手的和解时间减少了约25%。此外,在考虑猛烈袭击时,我们发现安全门槛增加了10%(PLE案的0.26到SSLE案的0.36),而对于SSLE案的20%对手,解决时间减少了约70%。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关主题
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员