Diffusion models have achieved remarkable generative quality but remain bottlenecked by costly iterative sampling. Recent training-free methods accelerate diffusion process by reusing model outputs. However, these methods ignore denoising trends and lack error control for model-specific tolerance, leading to trajectory deviations under multi-step reuse and exacerbating inconsistencies in the generated results. To address these issues, we introduce Error-aware Trend Consistency (ETC), a framework that (1) introduces a consistent trend predictor that leverages the smooth continuity of diffusion trajectories, projecting historical denoising patterns into stable future directions and progressively distributing them across multiple approximation steps to achieve acceleration without deviating; (2) proposes a model-specific error tolerance search mechanism that derives corrective thresholds by identifying transition points from volatile semantic planning to stable quality refinement. Experiments show that ETC achieves a 2.65x acceleration over FLUX with negligible (-0.074 SSIM score) degradation of consistency.
翻译:扩散模型在生成质量方面取得了显著成就,但其迭代采样过程仍受限于高昂的计算成本。现有的免训练方法通过复用模型输出来加速扩散过程,但这些方法忽略了去噪趋势,且缺乏针对模型特定容错能力的误差控制,导致在多步复用下产生轨迹偏差,加剧生成结果的不一致性。为解决这些问题,本文提出误差感知趋势一致性(ETC)框架,该框架(1)引入一致趋势预测器,利用扩散轨迹的平滑连续性,将历史去噪模式投影至稳定的未来方向,并在多个近似步骤中逐步分配,从而实现无偏离加速;(2)提出模型特定的误差容限搜索机制,通过识别从波动性语义规划到稳定性质量优化的过渡点,推导出校正阈值。实验表明,ETC在FLUX基础上实现了2.65倍的加速,且一致性退化可忽略不计(SSIM得分仅下降0.074)。