Strictly-convex straight-line drawings of $3$-connected planar graphs in small area form a classical research topic in Graph Drawing. Currently, the best-known area bound for such drawings is $O(n^2) \times O(n^2)$, as shown by B\'{a}r\'{a}ny and Rote by means of a sophisticated technique based on perturbing (non-strictly) convex drawings. Unfortunately, the hidden constants in such area bound are in the $10^4$ order. We present a new and easy-to-implement technique that yields strictly-convex straight-line planar drawings of $3$-connected planar graphs on an integer grid of size $2(n-1) \times (5n^3-4n^2)$.
翻译:3美元连接的小区域平面图的精密直线绘图构成图绘制的经典研究主题。 目前,最著名的图绘制区域是美元(n%2)\ times O(n%2)$(n%2),B\'{a}r\'{a}ny 和Rote通过基于扰动(不限制)卷心图绘制的尖端技术显示的美元(n%1)和罗特。 不幸的是,这类区域中隐藏的常数是10美元(10%4)的顺序。我们展示了一种新的易于执行的技术,在2美元大小(n-1)\时间(5n%3-4n%2美元)的整形网格上产生3美元连接的直线平面图。