Observations indicate that large-scale anomalies exist in the fluctuations of the cosmic microwave background. In these anomalies, the hemispherical power amplitude asymmetry has a correlation length comparable to that of the observable universe. We propose that a topological defect created by spontaneous breaking of the U(1) symmetry prior to inflation generated an initial phase variation, $\delta \theta$, across the observable region of the universe. The amplitude of this phase fluctuation is protected by topology if the defect is inside the horizon, and is frozen by causality if the defect exits the horizon. After inflation, the phase-corresponding boson field started to oscillate, when the Hubble rate decreased to a level comparable to the mass of the boson field. The energy density of the newly created boson particles varied across the observable universe. The bosons subsequently decayed into radiation prior to the BBN epoch, and the resulting fluctuations in the energy density produced the observed power asymmetry. This scenario predicts a scale-dependent modulation amplitude power asymmetry and in addition, as topological defects created by phase transitions are a very general phenomenon, the observed hemispherical asymmetry may be seen as an evidence for the cosmological inflation.


翻译:观测显示宇宙微波背景的波动中存在大规模反常现象。 在这些反常中, 半球电力膨胀不对称的半球动力膨胀场具有与可观测宇宙相近的相长。 我们提议, 通货膨胀前U(1)对称自发断裂导致宇宙可观测区域初步阶段变异, 美元=delta\theta$, 这一阶段波动的振幅受到地形学的保护, 如果缺陷在地平线内, 并且如果缺陷离开地平线, 就会被因因果关系而冻结。 在通货膨胀后, 相向对应的波森场开始螺旋状变长, 当赫伯伯尔率降低到与博森场质量相近的水平时。 新创造的波森粒子的能量密度在可观宇宙中各有不同。 博森随后在BNEPotoch之前腐蚀成辐射, 以及由此导致的能源密度波动导致观察到的电量不对称。 这个假设预测, 以规模为根据的调控调的波力变能力场开始变形, 并且作为由阶段性变形形成的表变形缺陷, 他所观察到的时会观察到的时会观察到的是, 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年12月2日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
4+阅读 · 2019年12月2日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员