Breast cancer remains the most common cancer among women and is a leading cause of female mortality. Dynamic contrast-enhanced MRI (DCE-MRI) is a powerful imaging tool for evaluating breast tumors, yet the field lacks a standardized benchmark for analyzing treatment responses and guiding personalized care. We participated in the MAMA-MIA Challenge's Primary Tumor Segmentation task and this work presents a proposed selective, phase-aware training framework for the nnU-Net architecture, emphasizing quality-focused data selection to strengthen model robustness and generalization. We employed the No New Net (nnU-Net) framework with a selective training strategy that systematically analyzed the impact of image quality and center-specific variability on segmentation performance. Controlled experiments on the DUKE, NACT, ISPY1, and ISPY2 datasets revealed that including ISPY scans with motion artifacts and reduced contrast impaired segmentation performance, even with advanced preprocessing, such as contrast-limited adaptive histogram equalization (CLAHE). In contrast, training on DUKE and NACT data, which exhibited clearer contrast and fewer motion artifacts despite varying resolutions, with early phase images (0000-0002) provided more stable training conditions. Our results demonstrate the importance of phase-sensitive and quality-aware training strategies in achieving reliable segmentation performance in heterogeneous clinical datasets, highlighting the limitations of the expansion of naive datasets and motivating the need for future automation of quality-based data selection strategies.
翻译:乳腺癌仍是女性中最常见的癌症,也是导致女性死亡的主要原因。动态对比增强磁共振成像(DCE-MRI)是评估乳腺肿瘤的有力成像工具,然而该领域目前缺乏用于分析治疗反应和指导个性化护理的标准化基准。我们参与了MAMA-MIA挑战赛的原发性肿瘤分割任务,本研究提出了一种针对nnU-Net架构的选择性相位感知训练框架,强调以质量为中心的数据选择,以增强模型的鲁棒性和泛化能力。我们采用No New Net(nnU-Net)框架,结合选择性训练策略,系统分析了图像质量和中心特异性变异对分割性能的影响。在DUKE、NACT、ISPY1和ISPY2数据集上的对照实验表明,即使采用对比度受限自适应直方图均衡化(CLAHE)等高级预处理技术,包含存在运动伪影和对比度降低的ISPY扫描仍会损害分割性能。相比之下,使用DUKE和NACT数据(尽管分辨率各异,但对比度更清晰、运动伪影更少)的早期相位图像(0000-0002)进行训练,提供了更稳定的训练条件。我们的结果证明了在异质性临床数据集中,采用相位敏感和质量感知的训练策略对于实现可靠分割性能的重要性,同时揭示了简单扩展数据集的局限性,并推动了对未来基于质量的数据选择策略自动化的需求。