This paper presents a Multi-Robot Multi-Source Term Estimation (MRMSTE) framework that enables teams of mobile robots to collaboratively sample gas concentrations and infer the parameters of an unknown number of airborne releases. The framework is built on a hybrid Bayesian inference scheme that represents the joint multi-source probability density and incorporates physics-informed state transitions, including source birth, removal, and merging induced by atmospheric dispersion. A superposition-based measurement model is naturally accommodated, allowing sparse concentration measurements to be exploited efficiently. To guide robot deployment, we introduce a wind-aware coverage control (WCC) strategy that integrates the evolving multi-source belief with local wind information to prioritize regions of high detection likelihood. Unlike conventional coverage control or information-theoretic planners, WCC explicitly accounts for anisotropic plume transport when modelling sensor performance, leading to more effective sensor placement for multi-source estimation. Monte Carlo studies demonstrate faster convergence and improved separation of individual source beliefs compared to traditional coverage-based strategies and small-scale static sensor networks. Real-world experiments with CO2 releases using TurtleBot platforms further validate the proposed approach, demonstrating its practicality for scalable multi-robot gas-sensing applications.
翻译:本文提出了一种多机器人多源项估计(MRMSTE)框架,使移动机器人团队能够协作采样气体浓度并推断未知数量大气释放源的参数。该框架建立在混合贝叶斯推理方案之上,该方案表示联合多源概率密度,并融合了基于物理的状态转移过程,包括由大气扩散引起的源项生成、移除与合并。该框架自然地兼容基于叠加原理的测量模型,从而能够高效利用稀疏的浓度测量数据。为引导机器人部署,我们引入了一种风感知覆盖控制(WCC)策略,该策略将不断演化的多源置信度与局部风场信息相结合,以优先探测高检测概率区域。与传统的覆盖控制或信息论规划器不同,WCC在建模传感器性能时显式地考虑了羽流传输的各向异性,从而为多源估计实现了更有效的传感器布设。蒙特卡洛研究表明,相较于传统的基于覆盖的策略和小规模静态传感器网络,该方法实现了更快的收敛速度并提升了对各独立源项置信度的区分能力。利用TurtleBot平台进行的实际二氧化碳释放实验进一步验证了所提方法的有效性,证明了其在可扩展多机器人气体传感应用中的实用性。