We transitioned our post-CS1 course that introduces various subfields of computer science so that it integrates Large Language Models (LLMs) in a structured, critical, and practical manner. It aims to help students develop the skills needed to engage meaningfully and responsibly with AI. The course now includes explicit instruction on how LLMs work, exposure to current tools, ethical issues, and activities that encourage student reflection on personal use of LLMs as well as the larger evolving landscape of AI-assisted programming. In class, we demonstrate the use and verification of LLM outputs, guide students in the use of LLMs as an ingredient in a larger problem-solving loop, and require students to disclose and acknowledge the nature and extent of LLM assistance. Throughout the course, we discuss risks and benefits of LLMs across CS subfields. In our first iteration of the course, we collected and analyzed data from students pre and post surveys. Student understanding of how LLMs work became more technical, and their verification and use of LLMs shifted to be more discerning and collaborative. These strategies can be used in other courses to prepare students for the AI-integrated future.
翻译:我们对后CS1课程进行了转型,该课程旨在介绍计算机科学的各个子领域,现以结构化、批判性和实践性的方式整合大型语言模型(LLMs)。课程目标在于帮助学生培养与人工智能进行有意义且负责任互动所需的技能。课程内容现包括对LLMs工作原理的明确讲解、当前工具的介绍、伦理议题探讨,以及鼓励学生反思个人使用LLMs行为及更广泛的AI辅助编程发展态势的实践活动。在课堂上,我们演示LLM输出的使用与验证方法,指导学生将LLMs作为更大问题解决循环中的组成部分加以运用,并要求学生披露并说明所获LLM协助的性质与程度。整个课程中,我们探讨了LLMs在计算机科学各子领域中的风险与益处。在课程的首轮实施中,我们收集并分析了学生课前与课后调查数据。学生对LLMs工作原理的理解变得更加技术化,他们对LLM输出的验证与使用也转向更具辨识力和协作性的方式。这些策略可应用于其他课程,以帮助学生为融入人工智能的未来做好准备。