The ever-increasing pace of scientific publication necessitates methods for quickly identifying relevant papers. While neural recommenders trained on user interests can help, they still result in long, monotonous lists of suggested papers. To improve the discovery experience we introduce multiple new methods for \em augmenting recommendations with textual relevance messages that highlight knowledge-graph connections between recommended papers and a user's publication and interaction history. We explore associations mediated by author entities and those using citations alone. In a large-scale, real-world study, we show how our approach significantly increases engagement -- and future engagement when mediated by authors -- without introducing bias towards highly-cited authors. To expand message coverage for users with less publication or interaction history, we develop a novel method that highlights connections with proxy authors of interest to users and evaluate it in a controlled lab study. Finally, we synthesize design implications for future graph-based messages.
翻译:科学出版物的不断增加要求有迅速确定相关文件的方法。虽然在用户兴趣方面受过培训的神经建议者可以提供帮助,但它们仍然能够产生长而单调的推荐论文清单。为了改进发现经验,我们引入了多种新方法,用文本相关性信息增加建议,强调推荐论文与用户出版物和互动历史之间的知识-绘图联系。我们探索由作者实体和仅使用引文的作者组成的协会。在一项大规模、现实世界的研究中,我们展示了我们的方法如何极大地增加参与 -- -- 以及作者在进行调解时今后的参与 -- -- 而不引入对高调作者的偏见。为了扩大对出版或互动历史较少的用户的信息覆盖面,我们开发了一种新方法,突出与用户兴趣的代理作者的联系,并在一项受控的实验室研究中对其进行评估。最后,我们综合了未来图表信息的设计影响。