In this paper we introduce Timeloops a novel technique for automatically learning system call filtering policies for containerized microservices applications. At run-time, Timeloops automatically learns which system calls a program should be allowed to invoke while rejecting attempts to call spurious system calls. Further, Timeloops addresses many of the shortcomings of state-of-the-art static analysis-based techniques, such as the ability to generate tight filters for programs written in interpreted languages such as PHP, Python, and JavaScript. Timeloops has a simple and robust implementation because it is mainly built out of commodity, and proven, technologies such as seccomp-BPF, systemd, and Podman containers, with fewer than 500 lines of code. We demonstrate the utility of Timeloops by learning system calls for individual services and two microservices benchmark applications, which utilize popular technologies like Python Flask, Nginx (with PHP and Lua modules), Apache Thrift, Memcached, Redis, and MongoDB. Further, the amortized performance of Timeloops is similar to that of an unhardened system while producing a smaller system call filter than state-of-the-art static analysis-based techniques.


翻译:在本文中,我们引入了“Temerloops”的新型技术,用于对集装箱化微服务应用程序自动学习系统叫过滤政策。在运行时,“Timerloops”自动学习一个系统叫的程序应该被允许引用,而拒绝称为虚假系统电话的尝试。此外,“Temerlops”解决了最先进的静态分析技术的许多缺陷,例如能够为以PHP、Python和JavaScript等翻译语言编写的程序生成紧密过滤器。“Timerlops”有一个简单而有力的实施,因为它主要是由商品制造的,并且已经证明,Seccomp-BPF、系统化和波德曼集装箱等技术,其代码小于500行。我们通过学习系统号召个人服务和两个微观服务基准应用程序来展示“Timloops”的效用,这些技术使用流行技术,如Python Flask、Nginx(PHP和Lia模块)、Afraft Thrift、Memced、Redis和MongDB。此外, 等。此外,“时间loops”系统的摊分解性性性性功能与非硬化分析系统类似,而制作较小型的系统。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
0+阅读 · 2022年10月28日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员