Activation function is a pivotal component of deep learning, facilitating the extraction of intricate data patterns. While classical activation functions like ReLU and its variants are extensively utilized, their static nature and simplicity, despite being advantageous, often limit their effectiveness in specialized tasks. The trainable activation functions also struggle sometimes to adapt to the unique characteristics of the data. Addressing these limitations, we introduce a novel trainable activation function, adaptive piecewise approximated activation linear unit (APALU), to enhance the learning performance of deep learning across a broad range of tasks. It presents a unique set of features that enable it to maintain stability and efficiency in the learning process while adapting to complex data representations. Experiments reveal significant improvements over widely used activation functions for different tasks. In image classification, APALU increases MobileNet and GoogleNet accuracy by 0.37% and 0.04%, respectively, on the CIFAR10 dataset. In anomaly detection, it improves the average area under the curve of One-CLASS Deep SVDD by 0.8% on the MNIST dataset, 1.81% and 1.11% improvements with DifferNet, and knowledge distillation, respectively, on the MVTech dataset. Notably, APALU achieves 100% accuracy on a sign language recognition task with a limited dataset. For regression tasks, APALU enhances the performance of deep neural networks and recurrent neural networks on different datasets. These improvements highlight the robustness and adaptability of APALU across diverse deep-learning applications.


翻译:激活函数是深度学习的核心组件,能够促进复杂数据模式的提取。尽管ReLU及其变体等经典激活函数被广泛使用,但其静态特性和简单性虽然具有优势,却常常限制了它们在特定任务中的有效性。可训练激活函数有时也难以适应数据的独特特征。针对这些局限性,本文提出了一种新颖的可训练激活函数——自适应分段近似激活线性单元(APALU),以提升深度学习在广泛任务中的学习性能。它具备一系列独特特性,使其能够在适应复杂数据表示的同时,保持学习过程的稳定性和效率。实验表明,在不同任务中,APALU相较于广泛使用的激活函数均有显著提升。在图像分类任务中,APALU在CIFAR10数据集上将MobileNet和GoogleNet的准确率分别提高了0.37%和0.04%。在异常检测任务中,APALU在MNIST数据集上将One-Class Deep SVDD的平均曲线下面积提升了0.8%;在MVTech数据集上,使用DifferNet和知识蒸馏方法时,分别提升了1.81%和1.11%。值得注意的是,APALU在有限数据集的手语识别任务中实现了100%的准确率。对于回归任务,APALU在不同数据集上提升了深度神经网络和循环神经网络的性能。这些改进突显了APALU在多样化深度学习应用中的鲁棒性和适应性。

0
下载
关闭预览

相关内容

在人工神经网络中,给定一个输入或一组输入,节点的激活函数定义该节点的输出。一个标准集成电路可以看作是一个由激活函数组成的数字网络,根据输入的不同,激活函数可以是开(1)或关(0)。这类似于神经网络中的线性感知器的行为。然而,只有非线性激活函数允许这样的网络只使用少量的节点来计算重要问题,并且这样的激活函数被称为非线性。
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员