I introduce the aghq package for implementing Bayesian inference using adaptive Gauss-Hermite quadrature. I describe the method and software, and illustrate its use in several challenging low- and high-dimensional examples. Specifically, I show how the aghq package can be used as a basis for implementing more complicated inference methods with a focus on aproximate Bayesian inference for Extended Latent Gaussian Models, with two difficult applications in non-Gaussian geostatistical modelling. I also show how the package can be used to make fully Bayesian inferences in models currently fit using frequentist inference by leveraging code from other packages, with an application to a zero-inflated, overdispersed Poisson regression fit using the glmmTMB package.
翻译:我引入了使用适应性高斯-赫米特二次曲线来实施贝耶斯推断的 aghq 套件。 我描述了该方法和软件,并用若干具有挑战性的低维和高维实例来说明其用途。 具体地说,我展示了如何将阿赫克套件用作实施更复杂的推断方法的基础,其重点是在非加西地理统计建模中使用两种困难的应用,即非加西地理统计建模,并展示了该套件如何利用其他包件的代码,在目前适合的模型中利用频繁推论,充分得出巴耶斯的推断,同时运用 glmmTMB 套件来应用零膨胀、过度分散的波斯森回归法。