Social media platforms, such as Twitter, provide a totally new perspective in dealing with the traffic problems and is anticipated to complement the traditional methods. The geo-tagged tweets can provide the Twitter users' location information and is being applied in traveler behavior analysis. This paper explores the full potentials of Twitter in deriving travel behavior information and conducts a case study in Manhattan Area. A systematic method is proposed to extract displacement information from Twitter locations. Our study shows that Twitter has a unique demographics which combine not only local residents but also the tourists or passengers. For individual user, Twitter can uncover his/her travel behavior features including the time-of-day and location distributions on both weekdays and weekends. For all Twitter users, the aggregated travel behavior results also show that the time-of-day travel patterns in Manhattan Island resemble that of the traffic flow; the identification of OD pattern is also promising by comparing with the results of travel survey.


翻译:Twitter等社交媒体平台为处理交通问题提供了全新的视角,预计将补充传统方法。地理标记的推特可以提供Twitter用户的定位信息,并被用于旅行者行为分析。本文探讨了Twitter在得出旅行行为信息方面的全部潜力,并在曼哈顿地区进行了案例研究。建议采用系统方法从推特地点获取流离失所信息。我们的研究显示Twitter具有独特的人口统计,不仅包括当地居民,也包括游客或乘客。对于个人用户来说,Twitter可以发现他/她的旅行行为特征,包括周日和周末的每日时间和地点分布。对于所有Twitter用户来说,汇总的旅行行为结果还表明,曼哈顿岛的日常旅行模式与交通流动相似;与旅行调查结果进行比较,确定OD模式也很有希望。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员