Edge computing has been getting a momentum with ever-increasing data at the edge of the network. In particular, huge amounts of video data and their real-time processing requirements have been increasingly hindering the traditional cloud computing approach due to high bandwidth consumption and high latency. Edge computing in essence aims to overcome this hindrance by processing most video data making use of edge servers, such as small-scale on-premises server clusters, server-grade computing resources at mobile base stations and even mobile devices like smartphones and tablets; hence, the term edge-based video analytics. However, the actual realization of such analytics requires more than the simple, collective use of edge servers. In this paper, we survey state-of-the-art works on edge-based video analytics with respect to applications, architectures, techniques, resource management, security and privacy. We provide a comprehensive and detailed review on what works, what doesn't work and why. These findings give insights and suggestions for next generation edge-based video analytics. We also identify open issues and research directions.


翻译:边缘计算随着越来越多的数据靠近网络边缘而获得了动力。特别是庞大的视频数据量和其实时处理需求由于带宽消耗高和延迟高而越来越阻碍传统的云计算方法。边缘计算的本质在于通过利用边缘服务器如小规模的本地服务器群集、移动基站的服务器级计算资源甚至是智能手机和平板电脑等移动设备来处理大部分视频数据,因此被称为基于边缘的视频分析。然而,实现这样的分析需要不仅仅是简单的利用边缘服务器的集体使用。在本文中,我们调查了基于边缘的视频分析的最新工作,涉及应用、体系结构、技术、资源管理、安全和隐私。我们提供了关于什么可行、什么不可行以及为什么的全面且详细的评论。这些发现提供了关于下一代基于边缘的视频分析的见解和建议。我们还确定了开放的问题和研究方向。

0
下载
关闭预览

相关内容

面向实时视频流分析的边缘计算技术
专知会员服务
78+阅读 · 2022年6月5日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
16+阅读 · 2021年3月2日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
VIP会员
相关VIP内容
面向实时视频流分析的边缘计算技术
专知会员服务
78+阅读 · 2022年6月5日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关论文
Arxiv
22+阅读 · 2022年3月31日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
16+阅读 · 2021年3月2日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员