We propose a structured extension to bidirectional-context conditional language generation, or "infilling," inspired by Frame Semantic theory (Fillmore, 1976). Guidance is provided through two approaches: (1) model fine-tuning, conditioning directly on observed symbolic frames, and (2) a novel extension to disjunctive lexically constrained decoding that leverages frame semantic lexical units. Automatic and human evaluations confirm that frame-guided generation allows for explicit manipulation of intended infill semantics, with minimal loss in distinguishability from human-generated text. Our methods flexibly apply to a variety of use scenarios, and we provide a codebase and interactive demo available from https://nlp.jhu.edu/demos/infillmore.
翻译:我们提议有条不紊地扩展双向文字有条件语言生成,或“填充”由框架语义理论(Fillmore,1976年)启发。 指南通过两种方法提供:(1) 示范微调,直接以观察到的符号框架为条件,以及(2) 新的扩展,以脱离法系限制的解码,从而利用语义词义单位框架。自动和人文评估证实,框架制导生成允许对意图填充的语义进行明确操纵,尽量减少与人造文字的区别。我们的方法灵活地适用于各种使用情景,我们提供了一个代码库和互动演示,可从https://nlp.jhu.edu/demos/infillmore网站查阅。