The job of a camera operator is more challenging, and potentially dangerous, when filming long moving camera shots. Broadly, the operator must keep the actors in-frame while safely navigating around obstacles, and while fulfilling an artistic vision. We propose a unified hardware and software system that distributes some of the camera operator's burden, freeing them up to focus on safety and aesthetics during a take. Our real-time system provides a solo operator with end-to-end control, so they can balance on-set responsiveness to action vs planned storyboards and framing, while looking where they're going. By default, we film without a field monitor. Our LookOut system is built around a lightweight commodity camera gimbal mechanism, with heavy modifications to the controller, which would normally just provide active stabilization. Our control algorithm reacts to speech commands, video, and a pre-made script. Specifically, our automatic monitoring of the live video feed saves the operator from distractions. In pre-production, an artist uses our GUI to design a sequence of high-level camera "behaviors." Those can be specific, based on a storyboard, or looser objectives, such as "frame both actors." Then during filming, a machine-readable script, exported from the GUI, ties together with the sensor readings to drive the gimbal. To validate our algorithm, we compared tracking strategies, interfaces, and hardware protocols, and collected impressions from a) film-makers who used all aspects of our system, and b) film-makers who watched footage filmed using LookOut.


翻译:在拍摄长距离移动相机镜头时,摄像操作员的任务更具有挑战性,而且可能更危险。 广义地说, 操作员必须让演员们保持机体内, 同时安全地绕着障碍进行导航, 并实现艺术的愿景。 我们提议一个统一的硬件和软件系统, 分配摄像操作员的一些负担, 让他们在拍摄时能够集中关注安全和美学。 我们的实时系统提供一个拥有端对端到端控制的独家操作员, 这样他们就能平衡对行动的反应, 相对于计划的故事板和框架, 并同时看他们要到哪里去。 默认情况下, 我们没有实地监视器。 我们的 LookOut 系统是围绕一个轻量的商品摄像头 Gimbal 机制建立的, 对控制器操作员来说, 通常只是提供积极的稳定性。 我们的控制算法对语音指令、 视频和预设的脚本的反应, 使操作员免于分心。 制作前, 一名艺术家使用我们的图形来设计一个高层次摄像头的序列“ ” 。 这些可以具体地, 与我们用来比影像头、 和影像头的脚本的脚像头的系统, 一起阅读, 以及 的脚印、 服务器的逻辑, 的脚本, 和摄像头的逻辑, 用来的逻辑, 的逻辑, 阅读, 和脚的逻辑, 和脚本的脚本, 的脚本, 阅读的逻辑,,,, 阅读的脚本, 阅读的逻辑, 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月21日
Conceptualize and Infer User Needs in E-commerce
Arxiv
3+阅读 · 2019年10月8日
VIP会员
相关VIP内容
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员