Smart grids leverage data from smart meters to improve operations management and to achieve cost reductions. The fine-grained meter data also enable pricing schemes that simultaneously benefit electricity retailers and users. Our goal is to design a practical dynamic pricing protocol for smart grids in which the rate charged by a retailer depends on the total demand among its users. Realizing this goal is challenging because neither the retailer nor the users are trusted. The first challenge is to design a pricing scheme that incentivizes consumption behavior that leads to lower costs for both the users and the retailer. The second challenge is to prevent the retailer from tampering with the data, for example, by claiming that the total consumption is much higher than its real value. The third challenge is data privacy, that is, how to hide the meter data from adversarial users. To address these challenges, we propose a scheme in which peak rates are charged if either the total or the individual consumptions exceed some thresholds. We formally define a privacy-preserving transparent pricing scheme (PPTP) that allows honest users to detect tampering at the retailer while ensuring data privacy. We present two instantiations of PPTP, and prove their security. Both protocols use secure commitments and zero-knowledge proofs. We implement and evaluate the protocols on server and edge hardware, demonstrating that PPTP has practical performance at scale.
翻译:智能网格利用智能米的数据来改进运营管理并实现成本降低。 精细计量数据还有助于同时使电力零售商和用户受益的定价计划。 我们的目标是为智能网格设计一个实用的动态定价协议,其中零售商收取的费率取决于其用户的总需求。 实现这一目标具有挑战性,因为零售商和用户都不信任这一点。 第一个挑战是设计一个鼓励消费行为的定价计划,鼓励消费行为,从而降低用户和零售商的成本。 第二个挑战是防止零售商篡改数据,例如,通过声称总消费大大高于其实际价值。 第三个挑战是数据隐私,即如何将数据数据数据数据数据隐藏于敌对用户手中。 为了应对这些挑战,我们提出了一个计划,如果总消费或个别消费超过某些阈值,则收取峰值。 我们正式制定了一个保密透明定价计划(PPTP),让诚实用户在确保数据隐私的同时检测对零售商的篡改。 我们提出了两个数据隐私隐私问题,我们展示了PPTP的即时捷端协议的即证, 并证明了其安全性协议。