Text style transfer (TST) is an important task in natural language generation (NLG), which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing (NLP), and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of TST. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_Survey
翻译:文本样式传输(TST)是自然语言生成(NLG)中的一项重要任务,其目的是控制生成文本中的某些属性,例如礼貌、情感、幽默和其他许多属性。它在自然语言处理领域有着悠久的历史(NLP),最近由于深层神经模型带来的有希望的性能而重新引起极大关注。在本文中,我们介绍了对神经文本风格传输研究的系统调查,自2017年第一次神经文本风格传输工作以来,该研究覆盖了100多条具有代表性的文章。我们讨论了任务拟订、现有数据集和子任务、评估,以及在平行和非平行数据的情况下丰富的方法。我们还就与未来开发TST有关的各种重要议题进行了讨论。我们整理的文件列表在 https://github.com/zijing-jin/Text_Textyle_Transfer_Suvey