Threat detection models in cybersecurity must keep up with shifting traffic, strict feature budgets, and noisy hardware, yet even strong classical systems still miss rare or borderline attacks when the data distribution drifts. Small, near-term quantum processors are now available, but existing work rarely shows whether quantum components can improve end-to-end detection under these unstable, resource constrained conditions rather than just adding complexity. We address this gap with a hybrid architecture that uses a compact multilayer perceptron to compress security data and then routes a few features to 2-4 qubit quantum heads implemented as quantum support vector machines and variational circuits. Under matched preprocessing and training budgets, we benchmark these hybrids against tuned classical baselines on two security tasks, network intrusion detection on NSL-KDD and spam filtering on Ling-Spam datasets, and then deploy the best 4-qubit quantum SVM to an IBM Quantum device with noise-aware execution (readout mitigation and dynamical decoupling). Across both datasets, shallow quantum heads consistently match, and on difficult near-boundary cases modestly reduce, missed attacks and false alarms relative to classical models using the same features. Hardware results track simulator behavior closely enough that the remaining gap is dominated by device noise rather than model design. Taken together, the study shows that even on small, noisy chips, carefully engineered quantum components can already function as competitive, budget-aware elements in practical threat detection pipelines.
翻译:网络安全中的威胁检测模型必须适应不断变化的流量、严格的特征预算以及存在噪声的硬件环境,然而即使强大的经典系统在数据分布漂移时仍会遗漏罕见或边界攻击。目前已有小型近期量子处理器可用,但现有研究很少展示量子组件能否在这些不稳定、资源受限的条件下改进端到端检测性能,而非仅仅增加复杂性。我们通过一种混合架构来填补这一空白:该架构使用紧凑的多层感知机压缩安全数据,然后将少量特征路由至由量子支持向量机和变分电路实现的2-4量子比特量子头部模块。在匹配的预处理和训练预算下,我们在两项安全任务(NSL-KDD数据集上的网络入侵检测和Ling-Spam数据集上的垃圾邮件过滤)中,将这些混合模型与调优后的经典基线进行对比评估,随后将性能最佳的4量子比特量子支持向量机部署至IBM Quantum设备,并采用噪声感知执行策略(包括读出缓解和动态解耦)。在两个数据集上,浅层量子头部模块均能稳定达到与使用相同特征的经典模型相当的性能,并在困难的近边界案例中适度降低了漏报率和误报率。硬件实验结果与模拟器行为高度吻合,表明剩余的性能差距主要源于设备噪声而非模型设计。综合而言,本研究表明即使在小规模、有噪声的芯片上,经过精心设计的量子组件已能作为具有成本效益的竞争性元素,应用于实际的威胁检测流程中。