End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
翻译:端到端自动驾驶旨在直接从原始传感器数据生成规划轨迹。当前,大多数方法将感知、预测和规划模块集成至完全可微分网络中,展现出良好的可扩展性。然而,这些方法通常依赖感知模块中对在线地图的确定性建模来引导或约束车辆规划,这可能引入错误的感知信息,进而影响规划安全性。为解决该问题,本研究深入探讨在线地图不确定性对提升自动驾驶安全性的重要性,并提出名为UncAD的创新范式。具体而言,UncAD首先在感知模块中估计在线地图的不确定性,随后利用该不确定性引导运动预测与规划模块生成多模态轨迹。最终,为实现更安全的自动驾驶,UncAD提出基于在线地图不确定性的碰撞感知规划选择策略,用于评估并选择最优轨迹。本研究将UncAD集成至多种前沿端到端方法中。在nuScenes数据集上的实验表明,集成UncAD仅增加1.9%的参数,即可将碰撞率降低最高达26%,可行驶区域冲突率降低最高达42%。代码、预训练模型及演示视频可通过https://github.com/pengxuanyang/UncAD获取。