Existing text-driven 3D human motion editing methods have demonstrated significant progress, but are still difficult to precisely control over detailed, part-specific motions due to their global modeling nature. In this paper, we propose PartMotionEdit, a novel fine-grained motion editing framework that operates via part-level semantic modulation. The core of PartMotionEdit is a Part-aware Motion Modulation (PMM) module, which builds upon a predefined five-part body decomposition. PMM dynamically predicts time-varying modulation weights for each body part, enabling precise and interpretable editing of local motions. To guide the training of PMM, we also introduce a part-level similarity curve supervision mechanism enhanced with dual-layer normalization. This mechanism assists PMM in learning semantically consistent and editable distributions across all body parts. Furthermore, we design a Bidirectional Motion Interaction (BMI) module. It leverages bidirectional cross-modal attention to achieve more accurate semantic alignment between textual instructions and motion semantics. Extensive quantitative and qualitative evaluations on a well-known benchmark demonstrate that PartMotionEdit outperforms the state-of-the-art methods.
翻译:现有的文本驱动三维人体运动编辑方法已取得显著进展,但由于其全局建模特性,仍难以精确控制细节化的、针对特定身体部位的运动。本文提出PartMotionEdit,一种通过部件级语义调制实现细粒度运动编辑的新型框架。PartMotionEdit的核心是部件感知运动调制模块,该模块基于预定义的五部分身体分解构建。PMM动态预测每个身体部位随时间变化的调制权重,从而实现对局部运动的精确且可解释的编辑。为了指导PMM的训练,我们还引入了一种结合双层归一化增强的部件级相似度曲线监督机制。该机制帮助PMM学习所有身体部位在语义上一致且可编辑的分布。此外,我们设计了一个双向运动交互模块。该模块利用双向跨模态注意力,实现文本指令与运动语义之间更精确的语义对齐。在知名基准数据集上进行的大量定量与定性评估表明,PartMotionEdit的性能优于现有最先进方法。